Martin Gottlieb-Schaflechner Rüdiger Breitschwerdt Martin Wynn

Towards a new digital platform model for information systems integration in the German healthcare industry

Agenda

Healthcare system fundamentals

Implications of digitalisation in healthcare

Derivation of the research problem

Methodological outline

The present use case for the research project

Discussion and next steps

Healthcare system fundamentals

- In a narrow sense: Implementation of agreements and organisational structures, by which health services for patients are provided, organised, financed and managed
- In a broad sense: Every organisational acting to tackle diseases, disabilities and other health-related risks
- The focus is on the delivery of patient-centred services, especially with regard to (1) inpatient and (2) outpatient medical care, as well as (3) integrated medical care
- → Apart from curative activities as the "core business", a healthcare system also comprises other fields of activities, like, e.g., health protection, health promotion and cross-sectional management and support processes

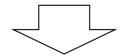
[Lameire, Joffe & Wiedemann, 1999; Saltman & Busse, 2002; Busse & Blümel, 2014]

Healthcare system fundamentals (2)

- The nature and the structure of every healthcare system depend on the ethical characteristics, formal and informal structures in a certain society
- By this, such a system depends on three groups of stakeholder groups:
 - The state with its institutions and respective governmental mechanisms,
 - Health service providers and,
 - The population of the state, that use health services and therefore interact with service providers.

Field of tension

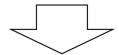
Fulfilment of social responsibility


Economic efficiency

Types of healthcare systems

Beveridge Model

Examples: UK, Italy, Spain, Sweden, Demnark, Norway, Finland, Canada



- taxation
- National Health Service
- · predominantly public providers

public

Private Insurance

Example: USA

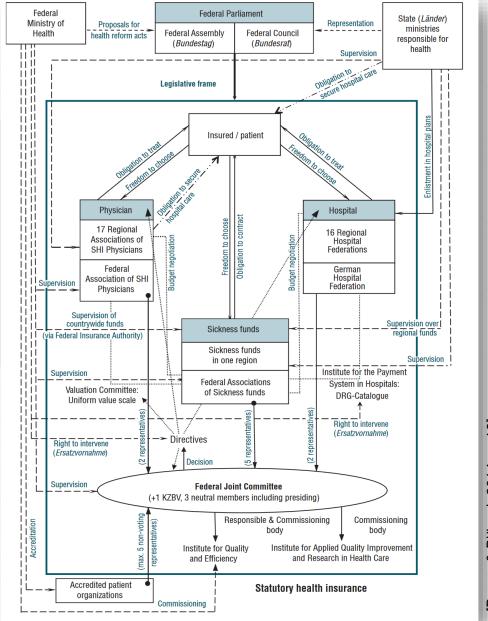
- · predominantly private funding
- Medicare/aid + Managed Care
- predominantly private providers

private

Bismarck Model

Examples: France, Germany, Austria, Switzerland, Belgium, Holland, Japan

- premium-funded
- · Mandatory Insurance
- private/ public providers


mixed

Ideal types, typically implemented as hybrid forms

The German healthcare system

- Based on the Bismarck model
- Actors are assigned to one of three layers:
 - Macro level
 - Meso level
 - Micro level
- Distinctive feature: corporatist self-governance

Kahin, 2000; Rouse, i & Levien, 2004, p. 1

Implications of Digitalisation in healthcare

- By using new technologies, existing branches like healthcare will turn into new, digitalised ecosystems
- Implications for participating actors (except):

Optimisation of business processes

Recombination of resource bundles

New business relations in a restructured value network

Need for coordinated value propositions of participating actors

Need for technical and organisational entry points

Platform ecosystems as a technical realisation

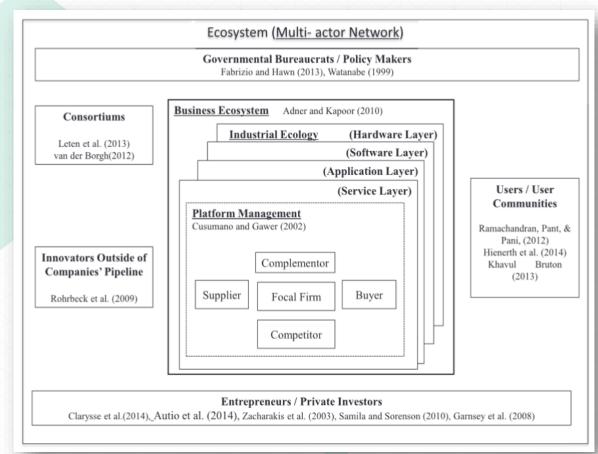
- Digital platforms work as a central information mediator to enable and support the exchange of information, products and services
- By integrating single actors and enterprise networks through platforms, value creation is promoted
 - The more actors a digital platform ecosystem has, the higher value creation of the platform is, as an increasingly bigger network provides more possibilities for developing innovations

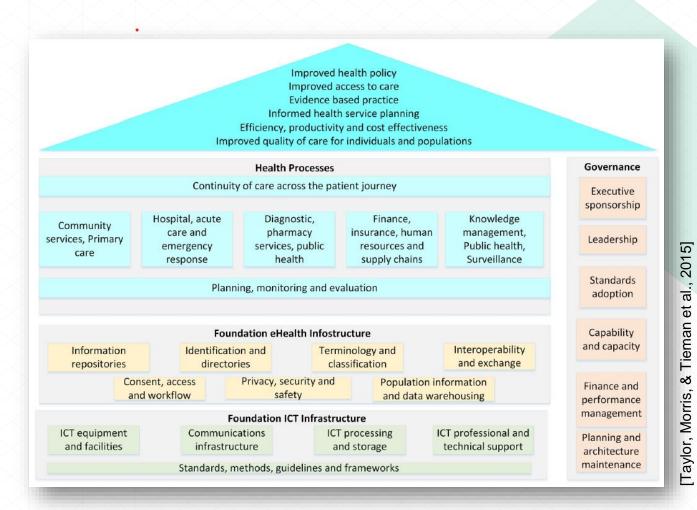
The implementation of platform-based ecosystems contributes to value creation across industries and beyond

Identification of the research gap

- The German healthcare system is a regulated market with a mix of public and private service providers, cross-sectional functions and a moderate level of patient sovereignty
- In contrast to more centralised systems, it is structured in a federal, decentralised way with different actors on a municipal, regional and national level, as well as different roles and responsibilities

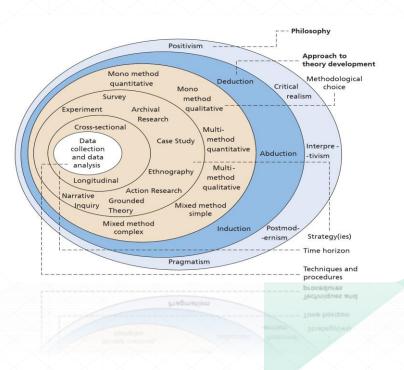
How can overarching interoperability be promoted and enabled, based on harmonised interfaces and common processes and structures?




Identification of the research gap (2)

 Recent contributions put emphasis on profit-oriented, private-sector enterprises

Only little knowledge exists about platform ecosystems and the particularities of the healthcare sector and its field of tension



Example: eHealth Architecture model (ISO TR 14639: 2014)

- Defines a collection of typical building blocks digital health
- Does not provide further information on interdependencies between these building blocks and the underlying business logic

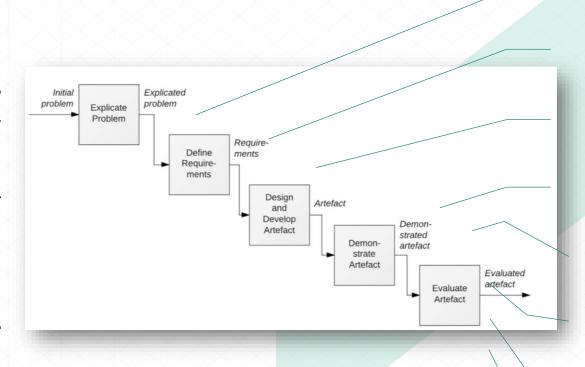
How to address the research gap?

Methodological outline

Constructivist paradigm

Primarily inductive approach to theory development

Exploratory mixed methods design


Case study strategy

Cross-sectional time horizon

Design Science Research for Information Systems (Hevner et al., 2004)

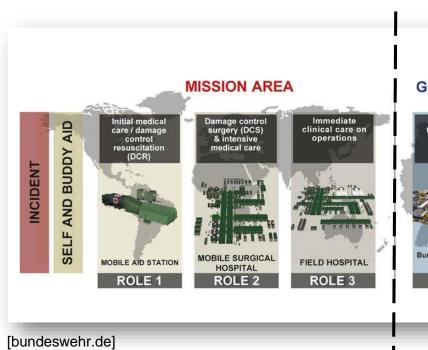
Methodological outline (2)

Identification of existing requirements

Complement these requirements via semi-structured interviews

Design a model based on the elaborated body of knowledge

Present a first iteration of the model


Conduct a quantitative survey to validate the model's characteristics

Revise the model based on the survey

Provide a second, revised iteration of the model

Discuss the results and the way ahead

Patient care

Management and administration

Health protection and health promotion

Professional training

Research and development

Further crosssectional functions

Civil health care

Discussion and next steps

- This research project aims to design and to validate a new digital platform model for information systems integration in the German health care system
- It aims to provide a comprehensive insight through using a model-based approach, to determine how IS can be integrated into different sectors within the health care system
- In order to create such an artefact, the concept of Design Science Research for information systems is utilised
- Further steps:
 - Identify key concepts to create the outline for conducting semi-structured interviews
 - Choose a suitable, model-based methodology to design the result artefact

Thank you!

Martin Gottlieb-Schaflechner M.Sc. MBA University of Gloucestershire The Business School

martingottliebschaflechner@connect.glos.ac.uk

References

- Arthur, W. B. (2011). The second economy. McKinsey Quarterly, 4(1), 90-99.
- Bouwman, H., de Vos, H., & Haaker, T. (Eds.). (2008). Mobile Service Innovation and Business Models. Berlin, Heidelberg: Springer Verlag.
- Busse, R., & Blümel, M. (2014), Germany, Health system review, Health Systems in Transition, 16 (2), 1-296.
- Busse, R., & Schreyögg, J. (2013). Management im Gesundheitswesen Eine Einführung in Gebiet und Buch. In Management im Gesundheitswesen (pp. 1-9). Berlin, Heidelberg: Springer Verlag.
- Brynjolfsson, E. & Kahin, B. (2000). Understanding the Digital Economy: Data, Tools, and Research. Cambridge, MA: MIT Press.
- Gawer, A., & Cusumano, M. A. (2014). Industry platforms and ecosystem innovation. Journal of Product Innovation Management, 31(3), 417-433.
- Hevner, A., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems Research. MIS Quarterly, 28(1), 75–105.
- · lansiti, M., & Levien, R. (2004). The Keystone Advantage: What the New Dynamics of Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Boston: Harvard Business School Press.
- Jacobides, M. G., Cennamo, C. & Gawer, A. (2018). Towards a theory of ecosystems. Strategic Management Journal, 39(8), 2255-2276.
- Johannesson, P., & Perjons, E. (2021). An Introduction to Design Science (2nd edition). Springer International Publishing. https://doi.org/10.1007/978-3-030-78132-3
- · Lameire, N., Joffe, P., & Wiedemann, M. (1999). Healthcare systems—an international review: an overview. Nephrology Dialysis Transplantation, 14(suppl_6), 3-9.
- Myers, B. A. (1986). Social policy and the organization of health care. Maxcy-Rosenau Public health and preventive medicine. Norwalk, Appleton-Century-Crofts, 1639-1667.
- Pagani, M., & Pardo, C. (2017). The impact of digital technology on relationships in a business network. Industrial Marketing Management, 67, 185-192.
- Pierce, L. (2009). Big losses in ecosystem niches: How core firm decisions drive complementary product shakeouts. Strategic Management Journal, 30(3), 323-347.
- Rouse, M. (2017). Definition digital economy. Retrieved from: https://searchcio.techtarget.com/definition/digital-economy.
- Saltman, R. B., & Busse, R. (2002). Balancing regulation and entrepreneurialism in Europe's health sector: theory and practice. In Regulating entrepreneurial behaviour in European health care systems (pp. 3-52). Buckingham: Open University Press.
- Saunders, M. N., Lewis, P., Thornhill, A., & Bristow, A. (2019). Chapter 4: Understanding research philosophy and approaches to theory development. In M. N. Saunders, P. Lewis, & A. Thornhill (Eds.), Research Methods for Business Students (8th ed., pp. 128–172). Pearson.
- Schwartz, F. W., & Busse, R. (2012). Denken in Zusammenhängen: Gesundheitssystemforschung. In Public Health (pp. 555-582). Urban & Fischer.
- Taylor, A., Morris, G., Tieman, J., Currow, D., Kidd, M., & Carati, C. (2015). Building an architectural component model for a telehealth service. E-Health Telecommunication Systems and Networks, 4(03), 35.
- Tsujimoto, M., Kajikawa, Y., Tomita, J., & Matsumoto, Y. (2018). A review of the ecosystem concept Towards coherent ecosystem design. Technological Forecasting and Social Change, 136, 49-58.
- Valentine, E., & Stewart, G. (2015). Enterprise business technology governance: Three competencies to build board digital leadership capability. In 2015 48th Hawaii International Conference on System Sciences (pp. 4513-4522). IEEE.

Picture credits:

https://www.bundeswehr.de

