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Introduction to Extrapolation Algorithms in Numerical
Analysis including New Results

Guido Walz

Zusammenfassug Die Intention der vorliegenden Publikation ist zweifach: Im ersten Teil
geben wir einen Uberblick Giber Extrapolationsverfahren in der Numerischen Mathematik,
die einen modernen Ansatz zur Konvergenzbeschleunigung darstellen. Voraussetzung fir
die Anwendbarkeit solcher Verfahren ist, dass die Folge, deren Konvergenz beschleunigt
werden soll, eine sogenannte asymptotische Entwicklung besitzt. Daher wird auch die-
ses Thema im Folgenden behandelt. Der zweite Teil der Publikation ist dem Problem der
numerischen Berechnung der Matrix-Exponentialfunktion durch Extrapolation gewidmet.
Wir greifen einen vor einigen Jahren in [Walz2] erstmals vorgestellten Algorithmus auf
und prasentieren die Ergebnisse ausflihrlicher numerischer Tests.

Keywords: Extrapolationsverfahren, asymptotische Entwicklung, Matrix-Exponentialfunktion
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Abstract The aim of the present publication is twofold: In the first part we give a survey on
extrapolation methods in Numerical Analysis, which establish a modern technique for con-
vergence acceleration. A prerequisite for the application of extrapolation is the existence
of a so-called asymptotic expansion for the sequence under consideration. Therefore,
also this topic is treated on the following pages. The second part of the paper is devoted
to the problem of computing the matrix exponential function by means of extrapolation.
We resume an algorithm presented some years ago in [Walz2] and present the results of
extensive numerical tests.

Keywords: extrapolation methods, asymptotic expansion, matrix exponential function
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Foreword

The question whether a given sequence converges or not is a fundamental topic
in mathematical analysis throughout the centuries, beginning in some sense
with Archimedes of Syracuse ([Arch]), and highlighted later on by giants such
as Newton, Leibniz and Cauchy, to quote only a very few of them.

In classical analysis it is irrelevant, how fast the sequence under consideration
converges, the main thing is it converges anyway. For example, it is well known
that the series .

) e
i=1 !

converges for each € > 0. But if you choose ¢ very close to zero, you will have to
calculate a very, very large number of summands to get near to the limit value.
But as | said: In classical analysis this does not matter at all, and classical
analysists are satisfied with the sheer convergence anyway.

In contrast to this, in Numerical Analysis the speed of convergence is of fun-
1glamental interest, since the goal is to compute the limit value of the sequence
ast.

Let us look at two examples:

The so-called Babylonian Method for calculating v/2 consists in computing the

sequence
1 2\ .
Xiv1==|xi+—),i=0,1,2,...,
2 i

starting e.g. with xo = 1.5. It is well known that this sequence converges very
fast, e.g. already the third iteration

x3 = 1.41421356237.....

is correct in all decimals shown here.
A familiar method for computing Euler’s constant e is to calculate the numbers

1 n
Sp = (1 + —)
n
for increasing values of n, since

1 n
lim (l—l——> =e.
n—oo n

But here, the convergence is quite slow, e.g.
$100 — 2.70481......
is correct only in one decimal!

So what to do? Now, in these situations there is need for convergence acce-
leration algorithms, and this is the reason why they establish a fundamental
research field in Numerical Analysis.

A type of convergence acceleration algorithms which has gained interest in the
last decades are so-called extrapolation methods, which are the topic of this pa-
per. There is already a vast literature on this (see e.g. [Brez1], [Brez2], [BrRe],
[Walz9], [Walz10] and the references therein), but the specific problem of com-
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puting the matrix exponential by extrapolation is to the best of my knowledge
not treated very well, as far as numerical results are concerned.

So the aim of this paper is twofold. In the first part | give a very brief overview
over extrapolation methods, in particular, | want to give an impression, in which
different fields of mathematics they can be applied. The second part is devo-
ted to the problem of computing the so-called matrix exponential (function) by
extrapolation methods.

Here also new results, in particular outcomes of extensive numerical calcula-
tions, are given. These were obtained in the context of the research project
,Matrix Exponential“ of Wilhelm Buchner Hochschule. | am very thankful to the
Research Committee for having had the opportinuity to work on this project for
some months, and | also want to thank Florian Bierbaum, who established the
software to do the numerical calculations.

So, have at least that amount of fun with reading the following pages as | had
with writing them!

Summer 2022, Guido Walz



1 Introduction and First Examples

In this chapter we give an introduction to convergence acceleration by extrapo-
lation methods. A prerequisite for the application of these methods is that the
sequence under consideration (i.e., the sequence whose convergence should
be accelerated) possesses a so-called asymptotic expansion, a term which is
also treated on the following pages.

Moreover, we present some examples from different parts of Numerical Analy-
sis.

1.1 Fundamental Definitions

We start directly with the definition of the term asymptotic expansion.

Definition 1.1
Let there be given a (finite or infinite) sequence of real numbers R = {r,, } with
the property

O<rn<mn<---,

i.e., R is positive and strictly increasing.

A sequence {s,} is said to possess an asymptotic expansion of order M with
limit ¢y and with respect to R, if for each n large enough, s, can be written in the
form

sn—co—|—2—+0 ™) (1.1)

with coefficients c,,, which are independent of n; here, o denotes the well-known
Landau symbol.
If (1.1) holds for each M € N, we write

sn:co—f—Z— (1.2)

for short.
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Remark

In a more general context, asymptotic expansions of the type (1.1) are denoted
as special logarithmic asymptotic expansions, in contrast to the so-called geo-
metric expansions, see [Walz9]. In this paper we will concentrate on the first
type of expansions.

It is not easy to give a first quick example for that, since the proof of the existence
of an asymptotic expansion is not easy in most cases. However, the following is
not too difficult to see (cf. also [Walz6]):

Example 1.1

Consider some real function f, which has derivtives of arbitrary order in some
definition range D, and fix some x € D, such that [x,x+ 1] also belongs to D.
Then the sequence s, = s,,(x), defined by

sa) = (-t )~ () (13)

possesses an asymptotic expansion with limit f/'(x) and with respect to the set
N of arbitrary order, i.e.

) = £+ Y, (1.4)

m=1 n" ,
where the coefficients ¢,, may depend on x, but not on n.

Proof: To prove this assertion we make use of the Taylor series of f and apply
itto f(x+ 1). This yields

fros = £ 000
Therefore, '
ot ) -s0 =1 W
and multiplication with n proves (1.4). ]

With the same approach one can show (cf. [Rutish]):
Under the assumptions from above, the sequence s,(x), defined by

- n 1 1

sn(x)zi'(f(X—Fﬁ)—f(X—;)) (1.5)

possesses an asymptotic expansion with limit f’(x) and with respect to the set
2N of arbitrary order, i.e.

Cm(X)

() = /) + X (1.6)
m=1

|
Further examples and numerical illustrations will be given soon.
We now proceed to the central topic of this paper, namely the acceleration of
convergence of a given sequence, which is known to possess an asymptotic
expansion of the above type:
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Theorem 1.1
Let {s,} be a sequence which possesses an asymptotic expansion of order

M with respect to a given sequence R = {r,}, and apply the following linear
extrapolation process:

m Choose a maximal index k.. <M

m Compute
) _
Yi =S
fori=0,1,... knax-
m Compute
- 1 k—1 k—1
yz(k):yz(ill)+2rk_1'(y§+l )_)’,( )) (17)

fork=1,2,... . kpax @ndi=0,1,..., kpax —k.
Then for each k < k.., the sequences {y,(k)} possess an asymptotic expansion

of the form "
M
yl(k) = ¢o + Z Cm

.
m=k41 0"

+o(n~™) (1.8)

So, the extrapolated sequences converge to the same limit as the initial one, but
do this faster, namely with order O(n~"x1) instead of O(n™"1).

Remark
Alternatively, the computation in (1.7) can be done in the form

k=1)  (k—1)
& _ 2%y Y
i = 2 — 1

In practice, the results of the extrapolation process usually are displayed in a
triangular scheme, also denoted as Romberg scheme oder Romberg table, see
Table 1.1.

Yo |
0 y(() |
0
kle)C - 1
o
k}’ﬂll)(
=
kmax - 1 .
o
1)
yklnax - l
0 .
0

max

Table 1.1: Romberg table
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The value y(()k’"“’“) is taken as an approximation to the desired value cy.

Example 1.2

a) As a first example we apply the extrapolation process to the sequence (1.3)
given above, which possesses an asymptotic expansion with respect to R =N
and limit f’(x). Just for illustration, we choose f(x) =In(x) and x = 2 with the true
value f’(2) = 0.5. Table 1.2 is built as shown in Table 1.1, with k., = 4. l.e., in
the first column you see the values of

1
sn(2)=n-(In(24+-)—In(2)) forn=1,2,4,8,16,
n

and in the next columns the results of the extrapolation process, which reads
here

() _ yoty L et )y (1.9)

Yi =Yiy +ﬁ Yier T

with y(o) = 5,i(2). The effect of the extrapolation is evident.

i

0,40546511
0,48710910

0,44628710 0,49893321
0,49597718 0,49995051

0,47113214 0,49982335 0,49999877
0,49886181 0,49999575

0,48499697 0,49997420
0,49969610

0,49234654

Table 1.2: Example 1.2 a)

b) Maybe even more impressive is the extrapolation based on the sequence s,
defined in (1.5). Here, with k,,,, = 4 the full 8-digit-accuracy is obtained. Since
here r,, = 2m for all m, the extrapolation process reads

_ 1 _ _
R LY

Vit Yi

The results are shown in Table 1.2.
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0,54930614
0,49799878
0,51082562 0,50002312
0,49989660 0,49999993
0,50262886 0,50000029 0,50000000
0,49999381 0,50000000
0,50065257 0,50000000
0,49999962
0,50016286

Table 1.3: Example 1.2 b)

More examples will follow throughout the paper.

1.2 Overview and Historical Remarks

It should be emphasized here once more, that extrapolation is a very efficient
method for convergence acceleration, and the only prerequisite for its applica-
tion is the fact that the sequence under consideration must possess an asym-
ptotic expansion. It is by no means of interest, in which context and by which
numerical process this sequence was computed. This implies that extrapolation
nowadays is applied in various fields of Numerical Analysis. In this section we
give a very brief overview on these fields. For the sake of brevity we will, with
a few exceptions, only indicate the topics without giving specific formulas or ex-
amples and refer the interested reader to textbooks and survey articles such as
[Brez2], [BrRe], [Dela], [Joyce], [Walz9], [Walz10] and further references therein.

1.2.1 Integration of functions

The modern interest in extrapolation methods started in 1955 with Romberg’s
paper entitled ,Vereinfachte numerische Integration” (Simplified numerical int-
gration) ([Romb]). Romberg’s method, which is in fact an extrapolation method,
is based on the fact, that the well-known trapezoidal rule possesses an asym-
ptotic expansion. The exact assertion is as follows:

Theorem 1.2
For some interval [a,b] and r € Ny, let f € C***1[a,b]. Suppose we want to ap-

proximate the value
b
12(f) = [

by means of the trapezoidal rule with n subintervals, n € N, i.e. by the formula

b—a (1l nl 1
Tn == by + V+_ n |l
(f) - <2fo vz_lf 2f>

where b
xv:a—i—v-%a and fy=f(xy) for v=0,...,n.
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Then the sequence {T,(f)} possesses an asymptotic expansion with limit I ( f)
of order r with respect to the setR = {2,4,6,...}; more precisely, we have

T.(f) = I°(f) + Z o(n=). (1.10)

mln

The assertion makes use of Euler's summation formula ([Euler]), the full proof
can be found in many textbooks on Numerical Ananlysis, or. e.g. in [Walz9].
The existence of an asymptotic expansion justifies the application of an extra-
polation process, which reads in this case as follows:

Theorem 1.3 ([Romb])
Consider the numerical integration of some function f € C**+![a,b], r € Ny. To do

this, define, for natural numbers n; = 2', the trapezoidal values

n;

7;0::Tn,-<f>="‘“<; +zf< )43 f()) (1.11)

and the midpoint values

b—a "I b—a
.= U, (f) = : i 1.12

U= Un(f) = =5 B fat v 7 ), (1.12)
both of which’s error is of order n; 2.
Then the following holds:
1. For eachn,

T, (f)+ U
() = B

holds, which obviously reduces the amount of work for the computation of the
sequences {T,(f)} and {U,(f)} considerably.

2. If we define new sequences {T*} and {U¥} through the iterative processes

Tkl Tk—l
Tk = Tl’fH]+’+l‘k—1’, fork=1,2,...,andi=0,1,... (1.13)
and analogously
Ukl _ k-1
Uk = v+ 2L fork=1,2,...,andi=0,1,..., (1.14)
i+1 4k 1

then the error of {T*} as well as that of {UF} is of order 4%+ and thus, for

each k, the sequences of stage k converge faster than those of stage (k—1).
This is Romberg’s method for numerical quadrature: To compute the inte-

gral fabf numerically, take the (rather crude) approximations 7. and/or U? for
i=0,1,2,..., and then apply the convergence accelerating processes (1.13) re-
sp. (1.14).
Due to the historical importance we present one short numerical example: Com-
puting of the integral

21

—dx (1.15)
1 X
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using the trapezoidal rule combined with the extrapolation process (1.13).
The results are shown in Table 1.4 and should be compared with the true value
In(2) =0,69314718....

0,75000000
0,69444444
0,70833333 0,69317461
0,69325397 0,69314748
0,69702381 0,69314790 0,69314718
0,69315453 0,69314718
0,69412185 0,69314719
0,69314765
0,69339120

Table 1.4: Calculation of flz }Cdx using (1.13); the first column shows the results of the
trapezoidal rule

1.2.2 Numerical computation of 7 and e

It is remarkable that common methods for the numerical computation of the two
most prominent constants in mathematics, namely 7 and e, turn out to produce
sequences which possess an asymptotic expansion.

We start with some remarks on the numerical computation of z: The followi-
ng construction dates back to the age of Archimedes, see [Arch]; it is well-
described in many publications on numerical quadrature and related topics.

Fig. 1.1: Unit circle with inscribed regular polygons

Let A, denote the area of a regular polygon with n vertices, n-gon for short,
which is inscribed into the unit circle. By intuition it is clear that

limA, = 7, (1.16)

n—soo
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and this fact was used by Archimedes for his method of approximating . He
computed one by one the numbers Ag, A2, A4, Agg, @and so on, until the desired
accuracy was reached, and took the last value as an approximation for z. (In
fact, he did even more, namely he also computed the areas of the correspon-
ding circumscribed polygons, say U,, and therefore obtained in each step an
inclusion of the true value, i.e. A, < © < U, for all n.)

It is remarkable that he did not increase the number n somehow, but he preci-
sely doubled it in each step, which is an interesting connection to the modern
approach by extrapolation methods.

Let us now analyze relation (1.16) in more detail. First, a little computation
shows that, for n € N,

Aoy = n- sin<§>, (1.17)
n
and, using the series expansion of the sine function, we obtain
Cm
Aw =1+ ) 5
1
with
” n.2m+1
Cm = (—1) m forallmEN,

and recognize that {A,} possesses an asymptotic expansion of arbitrary order
with limit 7 and r,, = 2m for all m.

Of course it would make no sense to approximate = by the sequence {A,}, if
these numbers would have to be computed via (1.17), thus using the number
r itself. But fortunately it is possible to calculate certain subsequences of {A,}
recursively, which is stated in the following result:

Define the sequence {Y;} through the recursion formula

=Y V2
\/1+\/1 — (¥;/27)?

with Yy = 2. Then for all i € N the identity

fori=0,1,2,..., (1.18)

Yii

)/i == A2i+2

holds; in other words, equation (1.17) yields a recursion formula for the compu-
tation of the sequence {A,:}.

For many centuries the computation of numbers A, was the most widespread
method for the computation of 7, and the only progress that was made consisted
in increasing the number of vertices of the respective polygons. For example,
Ludolf van Ceulen (= from Cologne) in the year 1610 obtained 35 digits of & by
calculating the area A, of the regular polygon with n = 262 vertices!

The first methodical advance is due to Ch. Huygens ([Huy]) in 1654; using geo-
metrical arguments, he showed that the sequence {7, }, defined by

 4Ay,—A,

T, 3
converges faster to the limit = than the sequence {A,} itself does. So, Huygens
found out the first step (but only the first) of the extrapolation procedure (1.7) as
a convergence accelerating method in this special case.



Introduction to Extrapolation Algorithms 11

The next milestone in the history of extrapolation methods is, without any doubt,
the booklet of Saigey [Saigey] from 1859, which unfortunately was overlooked
for more than a century and was rediscovered in 1984 by Dutka [Dutka]. Saigey
developed, with purely analytical methods, in particular without refering to Archi-
medes or Huygens, the existence of an asymptotic expansion for the sequence
{A,} from above, i.e. he proved (with a slight change of notations)

(&) (60) Cc3
A, = 717+—2+—4+—6+"' ,
n n n

where the ¢, are fixed coefficients, and then derived from this relation his ,higher
approximations* to zr, which turn out to be nothing else than the results of the lex
process: Considering {A,} as the sequence of first approximations, he defines
the second approximations,

- 1
An = A2n + § : (AZn _An) )

the third approximations,

Bn = A2n +—- (AZn _An) 5
the fourth approximations,

1
Cn = BZn+@'(BZn_Bn)7

and so on. So, Saigey was the very first who developed a special case of the
extrapolation process (1.13) in iterative form; note that this was almost precisely
100 years before Rombergs paper appeared.

Another very prominent number in mathematics is Euler’s constant e. There
exist dozens of numerical methods for the computation of this number or, more
general, for the copmputation of the exponential function exp(x) = e*, x € C.
One of them is as follows:

Theorem 1.4
Let, for arbitrary n € N and x € C,

X\
su(x) = <1+Z> . (1.19)
Then
lgn sn(x) = exp(x). (1.20)
In particular,
lim <1 + 1) =e. (1.21)
n—oo n

Even more, it can be shown that the sequence s, (x) defined in (1.19) possesses
the asymptotic expansion

sp(x) = exp(x) + Z () (1.22)
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of arbitrary order, which sharpens (1.20) considerably.
Therefore, the extrapolation process can be applied. A first example is given

here (see Table 1.5), setting k. =4 and x = % thus approximating the value

1
exp (§> = 1.648721....

1,500000
1,625000
1,562500 1,646484
1,641113 1,648605
1,601806 1,648340 1,648718
1,646533 1,648711
1,624170 1,648664
1,648131
1,636151

Table 1.5: Approximation of exp(%) using extrapolation

In Chapter 2 this will be applied to square matrices which will provide new results
on the matrix exponential.

1.2.3 Numerical differentiation

In the previous section we had already encountered an example (Example 1.1)
for the approach we are going to present now: It was shown that the applica-
tion of two specific first-order divided differences, the forward difference and
the central difference, to a function g produces asymptotic expansions with limit
function g’. In the following we shall generalize this result considerably. Most of
the following results were first presented in [Walz6] and [Walz8].

We first have to learn some elementary facts on divided differences:

Definition 1.2
For some v € Z and m € Ny, let there be given a set of pairwise distinct numbers

Xy,...,Xv+m} and a function g, which is defined at these points.
hen the m—th order divided difference A(xy,...,xy+m;g) Of g with respect to the
points xy,...,xy1, IS defined recursively by

A(xj;8) = g(x;) forj=v,...,v+m,
Ay ooy X k—138) —AX i1 Xj4k5 8)

Xj—Xj+k
for k=1,....m and j=v,....v+m—k.

A(Xj,.. '7Xj+k;g) =

In almost every textbook on numerical analysis, one can find the proofs of the
following elementary properties of the operator A:
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Theorem 1.5
a) The divided difference A(xy,...,xy+m;g) can be written in the form

v+m
8(xu)
A(xv, e ,XV+m;g) = Z a)m‘u
u=v V,u
with
vV+m
iz

b) Application of the divided difference operator A to the monomial p;(x) := x/
yields
oy _ JO0, forj=0,....m—1
A(-XV,..-7XV+m’pJ) — {17 fO}"j:m)

i.e. A annihilates the polynomial space I1,,_,. In fact, A is even uniquely deter-
mined by this property, see [BrWa].

Now let [xy,...,xy+m] denote the smallest interval containing the points
Xy,...,Xy+m, and consider some g € C"[xy,...,Xxy+n]. Then it is known that, if

all points xy,...,xy+, collapse to one, say &, A(xy,...,xy1m;g) converges to
(m)
()

!
In"the case of equidistant points, the following fundamental lemma sharpens
this result considerably:

Theorem 1.6 ([Walz8])
Fix some arbitrary index k € {v,...,v+m}, and consider, forn € N, the sequence

of equidistant points {x\",...,.x"), }, defined through

(n) . J ;
=X+ - =V—k,....v—k+m.
Xpfj = Xk 0’ J ,

Furthermore, assume that the function g belongs to the differentiability class
cH YW, for some r > m.

Then the sequence {A(x(v”) feen ,xs,"lm; 2) }nen possesses the following asymptotic
expansion of order r —m:

(m) r—m ..
A, gy - 80 <

v oo Xyims

The result of Theorem 1.6 has a variety of applications in numerical analysis,
the most obvious of which being the numerical differentiation of functions. This
will be treated as an example in the rest of this subsection.

We still have the possibility to choose the index k appropriately, and the most
promising (and popular) choices are k = v and, for even values of m, k= v + 7,

which lead to the so-called forward resp. central difference operators:

Definition 1.3
Fix some value x € R. Then, adopting the notations from above, we call the
operator

8 (gmx) = Awxt 1 x+ i) (1.23)
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the m'" forward difference of g, and

m m—2 m—2 m

E,x— i —;g) (1.24)

8, (gsm,x) == Alx—

the m'" central difference of g. Note that we have on the right hand sides of
(1.28) and (1.24) both times divided differences of order m.

We can now apply Theorem 1.6 to the operators 6,{(g;m,x) and 6¢(g;m,x), thus
obtaining the main result of this subsection concerning the numerical differen-
tiation of a function; in a different approach, i.e. without using divided diffe-
rences, and with a completely different proof, the second part of the following
result (concerning &¢(g;m,x)) goes back to Rutishauser [Rutish] (for m = 1) and
Strém [Strom].

Theorem 1.7 ([Walz8])

Adopt the notations and assumptions from Theorem 1.6. Then the following re-
sults hold: _

a) The forward difference operator 5/ (g;m,x) possesses an asymptotic expan-
sion of the form

o

i) +o(n™ ).

6l (gimx) = &4y L

b) The central difference operator 5¢(g;m,x) possesses an asymptotic expansi-
on of the form -
oy (g;m,x) = §) +Y }/Jn(]x) +o(n"™") (1.25)
j=1

m!
with
Y = 0 for j odd,
i.e. the expansion in (1.25) contains only even powers of n.

Example 1.3
We conclude this subsection with a numerical example. Let g(x) = sin(x), m =2

and x = . So, we consider the second derivative of the sine function in x = %,
which is exactly
T, V3

—sin(3) = — 5~ = ~0.86602540..... (1.26)

We will make use of the central difference operator &, which takes here the
form

5¢(sin, 2, %) —A (f .

— —2sin <z>—i—sin E—i—l
3 3 n
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We computed these expressions for some values of n and obtained
55 (sin, 2, g) — 0,424066445
8¢ (sin, 2, g) — 0,430762121
5¢ (sin, 2, g) — _0,432449177
8¢, (sin, 2, g) — —0,432871766
85, (sin, 2, §> — _0,432977464

Note that, according to (1.25), these numbers are approximations to the halfed
second derivative, which reads —0.43301270.

Applying now extrapolation to these values yields the following table, which
looks quite satisfactory.

—0,424066445

—0,43299401
—0,430762121 —0,43301270
—0,43301153
—0,432449177 —0,43301270
—0,43301263
—0,432871766 —0,43301270
—0,43301270

—0,432977464

Table 1.6: Approximation of sin”(%) = —0.43301270 using the central difference operator
combined with extrapolation

1.2.4 Approximation of functions

In this section we summarize some results on the approximation of special func-
tions using sequences which turn out to possess an asymptotic expansion. We
use two different approaches; the results shown in this section were developed
in [Walz1], see also [Walz9]. There one can also find the proofs of the following
theorems.

1.2.4.1 Partial Products of Infinite Products

Let us begin with the following special case of the famous Weierstraf3 factoriza-
tion theorem:
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Theorem 1.8
Consider some arbitrary entire function f with f(0) # 0, and denote the set of

its zeros by {ay }. Furthermore, let there exist some natural number r, such that

the infinite series
oo 1 r+1
VZ'] ( lay| )

converges and set, for all v in N:

Ev(z) = (1——) eXp<g ( )f>

Then there exists an entire function g, such that for all z € C the equality
f(z) = exp(g H

holds.

The connection of this theorem with our considerations on asymptotic expan-
sions is given by the following Theorem 1.9, which says that - under certain
assumptions on the set {a,} - the sequence of partial products

0,(z) := exp(g HEV (1.27)

possesses an asymptotic expansion with limit f(z).

Theorem 1.9 ([Walz1], [Walz9])
Adopt the notations and assumptions of Theorem 1.8, and assume in addition

that for all j > r+ 1 the partial sums of the series )o:o (%)l possess an asym-

ptotic expansion i.e., there exist numbers n(j) and cu( /), such that

Z 1)’ _ . cu(J)
> (E) =)+ L oG (1.28)
= n=1
Then also the partial products in (1.27) possess an asymptotic expansion of the
form
?’u
0 (2) )+ ),
p=1 nh

where the A, are sums of certain p,(j)'s, and in particular A, = p;(r+1).

Example 1.4
With I'(z) denoting the usual Gamma-function, we consider the entire function

1
z-T(z)

fz) =
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It is well-known that the zeros of f are precisely the negative integers, each of
them having multiplicity one. Therefore, the assumptions in Weierstraf3’ factori-
zation theorem are satisfied, and since

o 1

we may take r = 1. Furthermore, the exponential function in front of the Wei-
erstra3 product can be chosen to be exp(g(z)) := exp(Cz) with the Euler-
Mascheroni constant C.

In order to check the applicability of Theorem 1.9, we have to look onto the

asymptotic behaviour of the sums Z
(see e.g. [Walz9]) that

u 1
L - L e

i.e. a relation of the type (1.28) holds. Therefore we may apply Theorem 1.9 to
the function f under consideration and obtain the following result: The partial
products

) forall j €N, j > 2. It can be shown

n

ou(z) == exp(Cz)- [] <(1+§) exp(_TZ))

v=1

of the Weierstral3 product for the function f possess the asymptotic expansion

o,(z) =

1.2.4.2 Use of Taylor’s Expansion

The method for the numerical computation of 7 presented in Section 1.2.2 can
be modified and generalized in many ways; in the present subsection we use
the idea behind it in order to construct asymptotic expansions for real functions,
which are invertible on a certain interval and possess there a series expansion.
Most of the material presented in this subsection comes from the author’s docto-
ral thesis [Walz1], see also [Walz9], but special cases of it can already be found
in the papers of Rutishauser ([Rutish]) and Filippi ([Filippi]).

We begin with the following illustrative example, which is a direct generalization
of the method for computing 7.

Example 1.5
Our aim is to construct an asymptotic expansion with limit

f(x) = arcsin(x)  forxe[—1,1].
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In this special case we know explicitly the series expansion for the inverse
f~1(y) = sin(y) of f, namely

_ S 2v+1
) = ; 2V +1 (1.29)

for all y € R. So, if we define, forn e Nand x € [—1,1]

Gu(x) := n-sin (M> , (1.30)

n

we immediately get from (1.29) the existence of an aeof the form
o,(x) = arcsin(x) + Z 2m )

i.e. an asymptotic expansion of arbitrary order and with the desired limit. [
At first sight, this result seems to be only of theoretical importance, because if
one would approximate the arcsin-function with the sequence {o, } as defined in
(1.30), he would have to evaluate this function and its inverse in each step. But
fortunately it is possible, very much like in (1.18), to compute the subsequence
{0,i(x)} for all i € Ny recursively:

Theorem 1.10
For arbitrary x € [—1,1], define the sequence {y;} through yo = x and fori=

1,2,...:
\/E‘yi—l

VIV Ot /2712

(1.31)

yi =

Then for all i € Ny:
yi = yi(x) = 03i(x)
with o defined in (1.30).

One easily recognizes the general principle standing behind this example; this
motivates our next theorem, which is the central one of the present subsection.

Theorem 1.11 ([Walz1])

Let there be given a real interval I, of which the origin is an interior point, and
consider some real function f, which maps I bijectively onto an interval J. Fur-
thermore, assume that f possesses for all x € I the series expansion

= Z ayx”
v=1
with a, # 0. Then the sequence of functions {c,(x)}, defined for alln € N through

Cn(x) := n-ay-f! (@) : (1.32)

n

possesses an asymptotic expansion of arbitrary order with limit f(x).
Obviously, Theorem 1.11 allows a lot of modifications; we will indicate two of
these in the following remarks.
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Remark

1. The structure of the series expansion of f~! carries over very closely to that
of the resulting asymptotic expansion. If, for example, the series of f~! contains
only odd powers of y, then the asymptotic expansion of (1.32) contains only
even powers of n (cf. the arcsin-example from above), a very desirable situation
in extrapolation theory.

However, also in the general case it is possible to produce asymptotic expansi-
ons of this type, namely by defining

6. =" (f1 (@) ! (@)) (1.33)

2. A closer look into the proof of Theorem 1.11 shows that one could as well
replace the function f(x) in (1.32) by any other function g(x) (and a; by 1/b,),
and would still obtain an asymptotic expansion, in this case of course with limit
g(x). For some special cases this approach was proposed by Filippi [Filippi] and
Rutishauser [Rutish].

However, this method has in general a serious drawback: As we shall see, the
elements of the subsequence {o,:(x)} can in many cases be computed recursi-

vely, provided that the first one, o;(x), is known. Now, with our approach this is
easy, since always o) (x) = a; x, but in the other case one only has that

oi(x) = arf ' (g(x)),

which can only in very special cases be computed excplicitly.
Let us continue with another example for Theorem 1.11. The function

j+1

f(x) = log(1+x) i

satisfies the assumptions of the theorem on any interval I = [—a, o] with 0 < a <
1, its inverse function being

) = exp(y)—1.

Therefore the functions

possess the asymptotic expansion

Cm(x) .

o,(x) = log(1+x) + Z

m=1

We remark that in this case all elements o, (x) can be computed by elementary
operations, since for all n € N we have

ou(x) = n-((1+x)"" = 1),

a well-known formula for the numerical computation of the natural logarithm.
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Finally, an application of the construction indicated in (1.33) leads us to the

functions
n

Gu(x) = 5+ (10" = (140711 |

which possess an expansion of the type

Com(x)
n2m

Gy(x) = log(1+x) +

1.2.5 Discretization Methods for Ordinary Differential Equations

Discretization methods for the numerical solution of differential equations esta-
blish one the most important disciplines in numerical analysis, where asymptotic
expansions and extrapolation methods play a prominent role. In this section we
give only a first impression of these methods; in particular, we concentrate on
single-step methods for first order problems. Readers interested in multistep
methods, higher order problems or more general topics as well as in the proofs
of the following results are kindly referred to [Walz9].

We consider the initial value problem for a first order ordinary differential equa-

tion
Yy =f(t,y), (o) =yo, (1.34)

where f is assumed to be sufficiently smooth. Suppose we want to compute a
numerical approximation of the value y(x), where x is some real number. To do
this, we use a one-step method, i.e. a numerical procedure of the form

Vvl = Yy +h®(ty,yv,h) (1.35)
forv=0,...,n—1, with

— I
ho= 270 and ty=ty+V-h, (1.36)

n

and take y, as an approximation for y(x). Everywhere in this section, y, (i.e., the
index n) will denote the final result of a process like (1.35), while y, is interme-
diate value of this process; in other words, n- & is constant as n goes to infinity.
The user-chosen number n is usually denoted as stepsize parameter, whereas
we shall speak of & as the stepsize; the function & is the increment function of
the one-step method (1.35).

We shall assume throughout that the increment function ® and therefore also
the numerical procedure (1.35) is sufficiently smooth and consistent with the
problem (1.34), which can be expressed through the condition

®(t,y,0) = f(t,y) forall (z,y).

In order to get some information on the global error (y, —y(x)) of a method, it is
reasonable to study first the so-called local error, i.e. that portion of the error
that is brought in by going from v to (v +1) in (1.35). The precise definition of
the term local error is by no means unique in the literature; we shall follow the
approach given in [HNW] and define the term

1(t,h) := y(t+h)—y(t) —hd(t,y(t),h)

as the local error (function) of the method (1.35).
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Using Taylor expansion, it can easily be shown that the local error of a consistent
method is of order O(h?) at least.

Example 1.6
Consider the increment function ®(z,y,h) := f(t,y), which defines Euler’s method

Yvil = Yy +hf(tv,yv),
and apply it to the first order problem
y=Y, »0)=1
with the solution y(¢) = €’. The local error function is given by
I(t,h) = €' (e"—(1+h)),
and we see, using Taylor expansion and (1.36), that /(¢,h) possesses the asym-

ptotic expansion
() =Y C’”Ef) .
n=2

nl

|
This behavior of the local error is typical for almost all one-step methods. The
hope is now that the existence of an asymptotic expansion carries over from the
local to the global error. In the present example, this is indeed true and can be
proved directly, since after n steps with stepsize 4 = x/n the approximating value
yn, can be written in closed form by y, = (1 +x/n)", which is already known to
possess an asymptotic expansion.
Of course it cannot be expected in general that there is a closed-form represen-
tation of y,. However, there is the following fundamental Theorem 1.12, which
says that the existence of an asymptotic expansion of the local error always
implies the existence of an asymptotic expansion of the global error. The first
proof of this result, which was quite long and difficult (but remember that the
first proof of an interesting result may be as ugly as it wants to be!), is due to
Gragg [Gragg1, Gragg?2]; the form of the statement as well as the proof below
is due to Hairer and Lubich [HaLu]. In my opinion, it is the most beautiful and at
the same time straightforward approach that is possible; therefore, in contrast
to the remark at the beginning we present at least an outline of this proof.

Theorem 1.12 ([Gragg1], [Gragg2], [HaLu])
In addition to the assumptions above, suppose that the local error function of
the one-step method (1.35) possesses an asymptotic expansion of order M + 1

of the form
M+1

1(t,h) = Y du(t)-H" +0(™)  forh—0, (1.37)
m=p-+1

where M is some integer greater than or equal to p.
Then the global error possesses the following asymptotic expansion of order M :

v = y(x) + f em(x) 0" +0o(l™)  forh—0. (1.38)
m=p
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Proof: The proof is by induction with respect to M, so let us start with M = p
and define a function ¢, as the (unique) solution of the initial value problem

1) = S FEN0)ept)—dpia(0) - epl) 0. (1.39)

With this function e,, we consider now a new increment function, say ®(!), defi-
ned by

D (1,y(t),h) := ®(1,y(t) +ep(t)hP ,h) — (ep(t+h) —ep(r))hP7", (1.40)
and the hereby also defined one-step method

W= W hdM ey, W Ry ) =y, (1.41)

Expanding the local error of this method, say /(! (, ), into powers of i we obtain
(W (t,h) = y(t+h)=y(t) —h®V (1,5(0), )
dpi1(t) — (%(I)(t, ¥,0)e,(t) + €, (t) | K71+ O(hP*?), (1.42)
where we have used (1.37) and
i<I>(t,sz) = iCID(t,y, 0) + O(h)
dy dy

(remember that ® was assumed to be sufficiently differentiable).
Since e, is the solution of the initial value problem (1.39), we see, using

d 0
a_yq)(tayao) = a_yf(tay)

that the #P*!-term in (1.42) vanishes. Therefore, the local error (V) (z,h) is of
order O(h?*?), and a standard result implies that the method defined by ®(!)
converges and is of order O(h*+1), i.e.

W —y(x) = O = o(n?). (1.43)
Comparing now equation (1.35) with (1.41) we see that (1.40) implies the rela-
tion
yil) = yp—ep(x)h.
Therefore, from (1.43),

yn = y(x)+ep(x)h” +o(h"),

and the first term of the proposed aehas been determined.

If M = p, the proof is complete. Otherwise, we repeat the procedure from abo-
ve, thus defining new increment functions @2, &) ..., until the full asymptotic
expansion in (1.38) is established.



Introduction to Extrapolation Algorithms 23

As already pointed out in another context, a very attractive situation is given if
the asymptotic expansion in (1.38) contains only even powers of h. If we ask

for criteria, under which a one-step method possesses an h?>—expansion, the
magic key word symmetry appears everywhere in the literature, i.e., symmetric

methods possess h*—expansions.

However, although this fact was known intuitively for quite a long time, its precise
proof, and in particular an exact definition of the term symmetry in this context
turned out to be a hard piece of work. The approach we are going to present is
based mainly based on the work presented in [HNW].

Let us rewrite the one-step method (1.35) in the form

y(t+h) = y(t)+h®(t,y(1),h) . (1.44)

Definition 1.4
We call the one-step method (1.44) symmetric, if the increment function ® keeps

invariant after replacing i by —h and then ¢ by ¢ + h, i.e. if we have formally
cb(tvy(t)7h) = q)(t+h7y(t+h)7_h) :
As a first example, we consider the trapezoidal rule

ftv,yv) + f(tve1,yv41)

. (1.45)

Yvil = Yy +h-

and the implicit midpoint rule

tv+lver Yv+Yvil
Yv+1 :)’v+hf<v 2V+ ’ Y 2V+ >7

which are both easily seen to be symmetric.
The following Theorem 1.13 indicates why symmetry is such a desirable proper-
ty in the context of asymptotic expansions and extrapolation methods.

Theorem 1.13
In addition to the assumptions of Theorem 1.12, let the one-step method under

consideration be symmetric. Then the asymptotic expansion (1.38) of the global
error is an h*—expansion, i.e. it is of the form

M _
yu(x) = y(x) + Z epr2j(x)-hP L o(hPTM) for h— 0. (1.46)
j=0

Example 1.7
To give a first illustration of Theorem 1.13, let us continue our example from the

beginning of this section, concerning the initial value problem

y=1y,y0) =1.

This time, we apply the trapezoidal rule (1.45), which gives us, after n steps with
stepsize h = x/n, the final result

Yo = yn(x) = <1+ﬁ)”

X
=5
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in closed form.
Using again the functions o (x) = (1+7)" from above, we may also write

yn(x) = 0,(x/2)-0,(x/2),
and from Theorem 1.4 it follows that y,(x) possesses the asymptotic expansion

yu(x) = <e5+ ) C“ﬂ—i?) : <e5+ ) %) =e' + ) d‘;—fjc) (1.47)
u=1 u=1 =

with certain coefficient functions d,. Moreover, since y,(x) = y_,(x) for all » and
x, in (1.47) all d, with odd index must vanish, and we have finally proved that

in accordance with Theorem 1.13. |
We now turn shortly to another class of interesting one-step methods, which
has been introduced and investigated in the last years; all methods in this class
enjoy the property of being symmetric and therefore lead to h>—expansions.
Let us start with the classical trapezoidal rule (cf. (1.45)), which we write now in
the form

Yv+1 = v ‘f'hlPT(thvHJV,va,h)

with the increment function

t
W= 1y, ty1, 3y, yva1,h) == Sty ) ﬂ;( vilvil) (1.48)

This method was already recognized to be symmetric. The idea is now to re-
place the Arithmetic mean on the right-hand side of (1.48) by other — in general
nonlinear — means, which gave the resulting one-step methods the name gene-
ralized trapezoidal rules. We consider the following types of means resp. incre-
ment functions:

WO = /Fy fori (Geometric),

2
| CLEE M (Harmonic),
fv+fvti
fv+1 - fv . .
plo.— _Jv& SV (Logarithmic),
log(fv+1/fv)
2 2
_|_
= M (Contra-Harmonic).
v+ fvt

Here we have used the abbreviations f, := f(ty,yv) and fy11:= f(ty+1,yv+1). Of
course, in certain cases some additional assumptions on the f,’s (e.g. positivity)
have to be imposed, which we will always do in the following. The behavior of
these one-step methods has been studied extensively in a series of papers by
Evans and Sanugi [EvSa1], [EvSa2] and Evans and Walz [EvWa]. The main
result concerning asymptotic expansions of these investigations is summarized
in the next theorem; it turns out that each of these methods is of order 2 and

possesses an i?—expansion.
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Theorem 1.14 ([EvWa))
Let ¥ denote an arbitrary one of the increment functions defined above, and

consider the hereby defined one-step method

Yv4+1 = yV+hlP(tV7tV+17yV7yV+lah)7 V:(),...,n—l,

with h= (x—1ty)/n andt, =ty+ vh for v=1,... ,n. Then the global error of this
method possesses an asymptotic expansion of the form

M
Yu(x) = y(x)+ Y com(x) K™ +o(h*™)  forh—0.
m=1

The order M of this expansion depends on the smoothness properties of f re-
sp. P.
For numerical examples we refer again to the original paper [EvWa].






2 The matrix exponential

In this chapter we take a closer look onto the so-called matrix exponential functi-
on, which is a direct generalization of the real exponential function to the case of
square matrices. Consequently, we will apply the generaliziation of the algorithm
considered in section 1.2.2 to the matrix case, thus obtaining new numerical re-
sults.

Let us start with the precise definition of the terms under consideration.

2.1 Definition and basic properties

In this section we will define the matrix exponential as well as other matrix func-
tions and have a look onto their fundamental properties.

2.1.1 The matrix exponential

In the theory of differential equations systems, the matrix exponential (function)
exp(A) plays a very important role. The matrix exponential is the natural gene-
ralization of the well-known real exponential function

exp(x) =e* forx € R. (2.1)

But how should this generalization work? Clearly, terms like e for a (m x m)-
matrix A make no sense.

So, the usual definition auf the matrix exponential is by applying the Taylor series
of exp(x) to the matrix A in an appropriate way. The exact definition is as follows:

Definition 2.1
Let A be a square matrix, say A € R™. Then the matrix exponential of A is
defined as

[o]

exp(A) = Z _l'Ai, (2.2)

i=0 b

where A’ denotes the i-fold multiplication of A with itself, and A° = I, the unit
matrix
We want to give a first example for this. Since summation up to infinity is quite

time-consuming, we use a matrix N which is nilpotent, i.e., N for some « is the
zero matrix.

Example 2.1
Let
0O -1 2
N=|0 0 3]eRr¥
0O 0 O
Then
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and therefore

0 0
0 0
0 0

0
N = 0] foralli> 3.
0

Thus the infinite series in Definition 2.1 reduces to a finite sum and yields

1 00 0 -1 2y /0 0 -3 1 -1
exp(N)=10 1 O0]+({0 O 3+§00 0O ]=(0 1 3
0 0 1 0 0 0 00 0 0 0 1
u
Remark

Of course not all matrices in the world are nilpotent, but it can be shown that
the series (2.2) converges fir each matrix A € R™*™. Therefore, exp(A) is well-
defined for all A.

Let us now collect some properties of the matrix exponential. For proofs and
further examples see e.g. [Haber], [Higham] and the references therein.
The first result says that the computation of the matrix exponential for a diagonal
matrix reduces to the computation of the usual real exponential function.

Theorem 2.1
Let D be a diagonal matrix, say

d 0 0 - 0
0 d 0 - 0
D=|:
-
0 O 0 d,
Then
exp(dy) 0 0 0
0 exp(da) O 0
exp(D) = '
: . 0
0 0 o0 exp(dy)

Proof: This comes directly from the definition, using the fact that

d 0 0 - 0

0 d 0 - 0
sl .
S

0 0 0 d

for all integers i. ]
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The following theorem says that the matrix exponential shares some important
properties of the real exponential function:

Theorem 2.2
The matrix exponential has - between others - the following properties:

1. Itis

exp(0) =1,
where 0 denotes the zero matrix.
2. For each square matrix A, it is
exp(A) ! = exp(—A). (2.3)

In particular, exp(A) is nonsingular.
3. If x denotes a real variable, then

4 exp(Ax) = Aexp(Ax). (2.4)
dx
Proof: The first statement comes directly from the definition.
To prove the second one, we first observe that
I =exp(0) =exp(A—A). (2.5)
To complete the proof we need the fact that
exp(A —A) =exp(A) -exp(—A)

as in the real case. And this is in fact true, as it will turn out in Theorem 2.3.
Finally, the proof of the third statement is straightforward as follows:
aexp(Ax) = <I+Ax+§A X —|—§A X4
1
—A+A%x+ 5A3x2+~-
= Aexp(Ax).

Let us look at a short example for the second statement:

Example 2.2
We use the matrix N from Example 2.1. Then

1 -2
0 -3,
0 0

N =

o O O

and, omitting intermediate calculations,

1 —
1 —
0 1

1 7

2

exp(—N)= 10 3
0



30 Guido Walz

So indeed
1 -1 3 11 -2 1 00
exp(N)-exp(—N)=10 1 3 01 -3]=101 0
0 0 1 0 0 1 0 0 1
as predicted. [

A very attractive property of the real exponential function ist that exp(x+y) =
exp(x) -exp(y) holds for all numbers x and y. In the matrix case, this is true under
an additional assumption.

Theorem 2.3
If two matrices A and B satisfy

A-B=B-"A, (2.6)
then
exp(A+B) =exp(A) -exp(B) = exp(B) - exp(A). (2.7)
In particular,

I =exp(A—A) =exp(A) -exp(—A) =exp(—A)-exp(A)

for each matrix A.
The proof can be done strightforward, using the Definition 2.1.

2.1.2 Other matrix functions

The idea of taking the series expansion of a real function in oder to define their
matrix counterpart can be transfered to other matrix functions in an obvious way.
The proof of the following theorem can be found e.g. in [Stickel].

Theorem 2.4
Let, for some complex number a and a real number r > 0, K,(a) denote the open
disk

K.(a)={z€C;|z—a| <r}.

Furthermore, let f(z) be a scalar function which possesses for all z € K,(a) a
series representation of the form

f() = 2c,~<z—a>’l

Then for each quadratic matrix A, whose eigenvalues all lie in K, (a), the matrix
function

f(A) = ici(A —al)’

is well-defined.

Therefore, functions as sin(A), cos(A) and of course exp(A) are well-defined for
all quadratic matrices A. But also rather funny things like arcsin(A) may be defi-
ned (see [Walz2]).

Furthermore, we may define the matrix logarithm as follows:
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Definition 2.2
For a quadratic matrix A, the (natural) matrix logarithm is defined as

(A=1T)

o 1yitl
log(a) = Y -V

i=1

whenever this series converges. This is in particular the fact, if all eigenvalues
of A lie in K (1), or, if the matrix A — I is nilpotent.

Example 2.3
Let
1 -1 1
A=10 1 3
0 1
Then
0 -1 3
A-I=|0 0 3
0O 0 O
and
0 0 -3 0 0 O
A-0*={0 0 0], A-D*=]0 0 0],
0 0 O 0 0 O
Thus, (A —1I) is nilpotent, and we have
0 -1 3\ ,/0 0 -3 0 -1 2
log(4)={0 0 3|-2{0 0 0 ]=|0 0 3
0O 0 O 0O 0 O 0O 0 O

Note that this is again the matrix N from Example 2.1, thus we have here
log(exp(N)) =log(4) =N

as expected. [ |

2.2 Numerical computation of the matrix exponential

2.2.1 Preliminaries

We now come back to the matrix exponential, in particular to the question, how
this function can be computed numerically. Of course, it is possible to do this
by evaluating partial sums of the series in (2.2). But it turns out that the con-
vergence of this series is much too slow to give a satisfactory result in finite
time.

There are also some other numerical methods, a survey of which can be found
e.g. in [MoLo] or [Higham] and the references therein, an additional method
was proposed by Stickel ([Stickel]). Furthermore, in [Walz2], [Walz3], an at that
time new method using extrapolation was proposed, but due to limited computer
capacities not numerically tested in a sufficient way. It is the purpose of this
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chapter to give a short review of the method and in particular to provide the
results of extensive numerical tests.

2.2.2 The Method

The follouing statement, which will turn out to be an important step in our me-
thod, is well-known since many years.

Theorem 2.5
Let A be an arbitrary quadratic matrix, and define for, n € N, the sequence of

matrices

Su(A) = <I+ %A)n (2.8)
Then
,}i_r&S”(A) =exp(A). (2.9)

For practical computations the convergence of the sequence S,(A) is too slow,
but the asssertion in (2.9) can be sharpened significantly:

Theorem 2.6 ([Walz2])
The sequence of matrices S,(A), defined in (2.8), possesses an asymptotic ex-

pansion of arbitrary order with limit exp(A), i.e.:

As pointed out in chapter 1, the existence of an asymptotic expansion justifies
the application of an extrapolation process to the sequence S,(A), in order to
accelerate the convergence signifantly. This leads to the following algorithm for
the numerical computation of exp(A) for given quadratic matrix A (see [Walz2],
[Walz3]). Note that extrapolation is a completely linear process, such that it can
be passed from numbers to matrices without problems.

Algorithm for the numerical computation of the matrix exponential

1. Choose a maximal Index &,
2. Compute

10 =55(4)

fori=0,1,...,ku. This can be done by iterated squaring.
3. Compute

(k) _ v (k=1) 1 k-1 k—1
Y=Y +2k_1'(Yi(+1 )_Yi( ))
fork=1,2,... kpax @and i =0,1,... kyae — k.

4. Take Yo(km‘”) as an approximation of exp(A).

Remark
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Step 3 can also be performed in the equivalent form

k 1 k—1 k—1

The justification of the statement in step 4 is given in the following theorem.

Theorem 2.7 ([Walz2]) ®
The sequence of matrices Y;"’ possesses an asymptotic expansion of arbitrary

order of the form

: C;(A),

Jj=k+1

i.e., for each fixed k, the sequence {Yi(k)} converges to exp(A) with an error of

order O(2~/(k+1)),
In the next section we give an outline of the results of extensive numerical tests
in order to illustrate the correctness and efficiency of the proposed algorithm.

2.2.3 Numerical Results

Example 2.4

As a first test and more or less just for fun we tried the nilpotent matrix already
considered in Example 2.1. As expected (or should | say: hoped), the algorithm
computed the exact result

1.0 —-1.0 0.5
0.0 1.0 3.0
0.0 00 1.0
already with k,,,,, = 1. [ |

The next two examples are more serious, but still the exact result is known and
can therefore used for control.

Example 2.5
Consider a (2 x 2)-matrix of the form

(5 o)
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It can easily be shown by induction that for all i € Ny

) b4i 0
4i )
=0 )
4l 0 b4i+1
B = (_b4i+1 0
4i2 _b4i+2 0
B = 0 _b4i—|—2

43 0 _b4i+3
B = (b4i+3 0

and so (b)  sin(b)
exp(B) = (—sin(b) COS(b))

If we choose, for example, b = 0.8, thus

B (_8.8 0(')8) , (2.10)

we obtain - with an 8-digit-accuracy -

exp(5) — [ 069670670 071735609
P =1 _0.71735600 0.69670670

In approximatig this we used the proposed algorithm with %, = 4 as a first
attempt. The result was

(2.11)

@ — 0.69674685  0.71737079
0 7 \—0.71737079  0.69674685 |’

which is correct up to four digits.
Setting k... = 6 alredy gives

v — ( 0.69670670 0.71735609), 2.42)

—0.71735609 0.69670670

which is correct in all shown digits. [
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Example 2.6

As pointed out in Theorem 2.1, the matrix exponential of a diagonal matrix is
easy to compute. We will use this fact to give another verification of the proposed
algorithm. To save space we will use the notation

d 0 0 -+ 0

0O 4 0 --- 0
diag(d;,da,...,dy) for | : . . o (2.13)

E w0

o o0 - 0 d,

Using this notation, we will compute numerically

exp( diag(—1,0.5,1,2))
= diag(exp(—1),exp(0.5),exp(1),exp(—2))
= diag(0.3678794411,1.6487212707,2.7182818284,0.1353352832).

Since the presentation of all intermediate results in form of a Romberg table is
rather space-consuming, we just show the upmost entries of each column, i.e.,

the values Yo(k), k=0,..., k. Choosing k... = 8 we obtained the results

YO( = diag(0.0000000000, 1.5000000000,2.0000000000, —1.0000000000)
YO( - diag(0.5000000000, 1.6250000000, 2.5000000000, 1.0000000000)
YO( = diag(0.3437500000, 1.6464843750,2.6770833333, —0.1666666666)
YO( = diag(0.3701057434,1.6486054382,2.7138789948, 0.1860584077)
Y0(4) = diag(0.3677749219,1.6487181048,2.7180298346, 0.1310866624)
YO(S) = diag(0.3678819473,1.6487212260,2.7182743438, 0.1355159712)
Y0(6) = diag(0.3678794104,1.6487212703,2.7182817150, 0.1353313529)
Y0(7) = diag(0.3678794413,1.6487212706,2.7182818275, 0.1353353270)
YO(S) = diag(0.3678794411,1.6487212707,2.7182818284, 0.1353352829)

which should be compared with the exact values above. [
Let us now look at some examples, where the results can not be computed
explicitly, and therefore there is essential need for numerical methods.

Example 2.7
First we give an illustration of formula exp(A)~! = exp(—A), stated in Theo-

rem 2.3. We chose the matrix

1.0 -2.0 0.0
A= 3.0 0.0 1.0
-1.0 —-1.0 2.0

Y
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hence
—-1.0 2.0 0.0

—-A=|-30 0.0 -1.0
1.0 1.0 -2.0

Using k.. = 12, our algorithm computed the results

exp(A) =
—0.04882097901021  —0.78283329067919 —1.88174352465658

0.23337817369046 —1.38110938667791 1.33228840766776
—5.09577545698056 0.54945511698858 6.92869800262720

and
exp(—A) =
—0.51287264916926  0.21856930515847 —0.18131720239588
—0.41851255893563 —0.49424659778797 —0.01862605138129
—0.34400835341044  0.19994325377715  0.01245290663710
And indeed, as you may verify, we have here exp(A)-exp(—A) =1. |
Example 2.8

Believe it or not, but we now treat a (2 x 2)-matrix, namely

49 24
M= <—64 31>

Although it looks quite harmless, in the context of computing the matrix expo-
nential it is by far not. In their paper [MoLo] the authors used the Taylor series
approach and obtained, using 6-digit accuracy,

—22.25880 —1.432736
(—61.49931 —3.474280) (2.14)
as an ,approximation” of exp(M). But the true result is
—0.735759 0.551819
eXp(1”)—(—1.471517 1.103638) (2.15)

and has obviously nothing in common with (2.14). This of course due to rounding
errors, but using the same accuracy our algorithm still produced three exact
decimals (with ke = 9).

If we use higher accuracy and k.., = 10, we get the exact result from above.
Interesting is here the way ,in between®. To illustrate what ist meant here, saving
at the same time some pages of text, we show similar as in Example 2.6, the

upmost entries of the Romberg table, i.e., the values Y(k), k=0,...,10.
See what happened:
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48.000000
64.000000

384.500000
512.000000

538.343750
717.333333

—755.027145
1007.196335

342.299574
34.341374

24.000000
32.000000

—192.000000
—255.500000

—269.000000
—358.322916

377.698625
503.968273

—128.362340
—170.782012

17.354628
46.279008 23.507386

0.945957
0.770770

0.752138
1.493357

—0.736714

y
A
Y
rY
Y Y
Y
A
A
n" 1.472792

A

(
(
(
(
(257.092456
(
(
(
(

—0.735732
—1.471481

—0.289038
—0.017505

0.560009
1.114558

0.552297
1.104275

0.551805
1.103620

YO(m) _

—0.735759
—1.471517

0.551819
1.103638

So, in the first steps, the results seem to ,explode®, but very soon they converge
to a rather satisfactory final result. [ |
Let us finish the paper as we started it, namely showing a complete Romberg
table:

Example 2.9
We calculated the exponential of the matrix
—-2.0 0.0 4.0
B=| 40 -20 -20],
0.0 0.0 1.0

and obtained, using k.. = 9, the result

0.135335283  0.000000000
0.541341132 0.135335283
0.000000000  0.000000000

3.443928726
2.148152428
2.718281828

exp(B)
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which is correct in all digits shown.

Now, what about the intermediate steps? Of course, displaying the Romberg
table with (3 x 3)-matrices as entries is too space-consuming, so we show the
Romberg table of the computation of one specific element and chose — for no
deeper reason — the one in the first column and second line. Since this is still to
wi%e to show it on this page, | splitted it into two parts, to be seen in Tables 2.1
and 2.2.

4.000000000
—4.00000000

0.000000000 2.666666666
1.000000000 0.103422619

0.500000000 0.423828125 0.584478654
0.567871093 0.554412652

0.533935546 0.538089586 0.540650059
0.545534963 0.541510221

0.539735254 0.541082641 0.541336950
0.542195722 0.541347779

0.540965488 0.541314637 0.541341051
0.541534908 0.541341472

0.541250198 0.541338117 0.541341130
0.541387315 0.541341152

0.541318757 0.541340772 0.541341132
0.541352408 0.541341134

0.541335582 0.541341088
0.541343918

0.541339750

Table 2.1: Romberg table Part 1

0.539236233
0.541392804

0.541359108 0.541340490
0.541340899 0.541341136

0.541341183 0.541341134 0.541341132
0.541341132 0.541341132

0.541341133 0.541341132
0.541341132

0.541341132

Table 2.2: Romberg table Part 2

It is quite obvious that the results in each single column converge to to the
correct result 0.541341132, but the rate of convergence invreases from column
to column, as predicted.

Bounds for the remeinig errors and consequentlx stoppimg rules for the algo-
rithm were given in [Walz5], see also [Walz9]. [



3 Concluding Remarks

In the situation of real functions, it is well-known that the sequences

s = ((1+3)"+ (1-2)7) 3.1)

f0=(5) =003) 0-5) " e

both possess an asymptotic expansion of the form

as well as

Cu(x)

sfl (x) = exp(x) + o
m=1

i.e., expansions of arbitrary order with limit exp(x) and with respect to the set
of exponents {2.4,6,...}. This means that the extrapolation process, applied to
these sequences, will converge faster than the one applied to (1+ ¢)". There-

fore it is tempting to do the same with the matrix functions, i.e., to consider the
sequences S! (A), defined by

s =3 ((r434) (- 1) ) 89

1 " 1 -

2

= — A== 4
S:(A) (I+ ZnA) (1 2nA> (3.4)
This indeed does work in theory, but in practice the calculations in (3.3) as well

as in (3.4) require the computation of matrix inverses, which is numerically, say,
challenging. Therefore we do not seriously suggest this approach.

and

Similar is true for the numerial calulation of other matrix functions like the matrix
logarithm introduced in Definition 2.2, Here, a good approximation is provided
by

Lo(A)=n- ((1+A)1/" —1) . (3.5)

More precisely, the asymptotic expansion

L,(A) =log(A)+ 1 B (A)

nm
m=1

is valid. But here, in practice the n-th roots of a matrix must be calculated, which
is even much more challenging than the computation of the inverse.

But since we do not want to finish this paper with a collection of negative as-
sertions, we finally cite a result found and proved in [Walz1], see also [Walz4]:



40 Guido Walz

Theorem 3.1
Suppose that A is a square matrix whose eigenvalues all lie in K, (0). Define

Yo = A2,
and, fori=1,2,...:
1
Y =2Y <I+\/I—4i—_1Yi—1)
Then
Y; =Yi(A) = S5 (A)
where

S.(A) = arcsin®(A) + Z %Cm(A).

m=1 n

Note that here only the calculation of square roots is necessary; methods for
this can be found e.g. in [Stickel].
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